Our GO2 entry

Daniel Bienstock (Columbia), Richard Waltz (Artelys), Jorge Nocedal (Northwestern)

#2 Overall

Outline of talk

- Underlying solver
- Choice of solvers, language(s) and resulting tradeoffs
- Comments on the problem
- Some details on our algorithm
- Future work

Underlying solver

- KNITRO
- General optimizers would call it a "log barrier" solver an interior point method
- Newton's method under the hood
- Converges to a local minimum of appropriate merit function which balances feasibility and optimality
- Merit function (IPOPT: a filter method) for stepsize computation
- These are excellent algorithms
- Scale fairly well to large (enough) problems
- Success depends on skill in how we use these methods

Programming language: why and implications

- We used Python
- I code in Python everyday, but I do not like Python. Why not use a modern language, such as C?
- I have worked on OPF for some time, but do not fully understand the .RAW format. The transformer specifications are troublesome
- I did not have confidence that I would develop a correct understanding within the scope of the competition
- The scoring methodology was complex and is tied to the data format. In GO1 we replicated some of the scoring code, but GO2 looked more difficult
- We anticipated that our code would need to evaluate multiple candidate solutions for each contingency
- We decided to incorporate the data reading code and the evaluation code from the evaluation team into our code.
- GO2 team altered the standard exception handling mechanism in Python. This challenged our debugging.
- Python can be unbearably slow, and Numpy is not always a possibility
- If we had the time we might attempt to redo everything in C. Note: this assumes that the data format and the evaluation code do not change (and they changed late into the competition)

Modeling approach

- Knitro requires the computation of the gradient and Hessian of each constraint at each iteration
- A major challenge. It gets in the way of modeling. Very error prone. ACOPF is especially challenging. It should be made automatic
- We used **AMPL** as an intermediary between our Python code and Knitro
- AMPL is **very good** at this !!! Fast (and correct) even on large GO2 models
- But: AMPL is old. It uses a file system interface with solvers. Files written and read as inputs and outputs. Can be nontrivial to debug models
- The file system feature interfered with MPI and the testing platform. Richard had to invest time to fix this.
- It would be outstanding if the AMPL team addressed the file system feature. It belongs in another era
- Nevertheless, we are very thankful for their help. AMPL proved invaluable

Comments on problem

On the largest cases, Knitro can require multiple minutes to run on a problem "from scratch"

Noteworthy: includes integer (binary) variables only

We model integer variables as (appropriate) sums over binary variables

Adjusted formulation: sometimes we are strict on (not) allowing slacks. Sometimes we penalize slacks linearly

- Thousands of contingencies
- A "proper" security-constrained algorithm should make multiple passes over the contingencies, and re-run the base case in full
- We deemed such an algorithm *infeasible* for our algorithmic setup under the GO2 rules. Not nearly enough time
- So, what to do:
 - 1. One-way algorithm: run the base case, and then run each contingency, repairing the solution as best as possible
 - 2. But each "run" involves multiple passes
- Why? We expected **realistic** problems in the following regard:
 - 1. The prior solution, in general, should be "not too bad",
 - 2. We expected the power system to be flexible
 - 3. We expected that in general the contingencies should be manageable

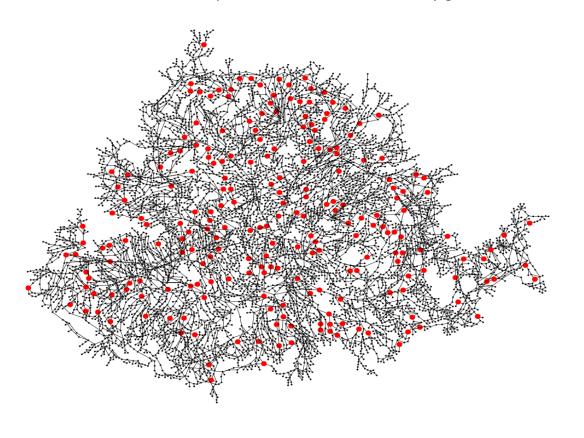
We like a good challenge: let's be scrappy

- A multiple attempt approach. Let's consider the base case
- First, try the prior solution and keep it as a candidate
- Run Knitro on the relaxation, and then try to round (another candidate)
- Run Knitro on the relaxation, then fix many non-integer variables, then re-run full problem
- Let's cheat:
 - Observe where (which buses) the prior solution is infeasible beyond a threshold
 - Fix integer variables elsewhere
 - Run problem with the integer variables fixed this way
- Why?

N06100 scenario 115

6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

- About 100,000 variables and constraints
- Picture shows buses where prior solution has infeasibility greater than 1e-3: about 200



obj=712281.64

total_bus_cost 1.85847217e-02 total_load_benefit 1.26257799e+06 total_gen_cost 5.50296330e+05 total_line_cost 0.00000000e+00

total_xfmr_cost 0.00000000e+00

(Knitro feaserror 2.481e-09)

169.05 sec 450 iterations

How about the contingencies?

- Consider a given contingency
- The base case solution is a candidate: let's keep it
- Even if bad (which it often is) the base case solution is bad in at most two buses
- We suspect that patching the base case solution primarily involves voltage adjustments
- We view this as primarily a reactive power issue
- An old power engineer's saying: reactive power does not travel far

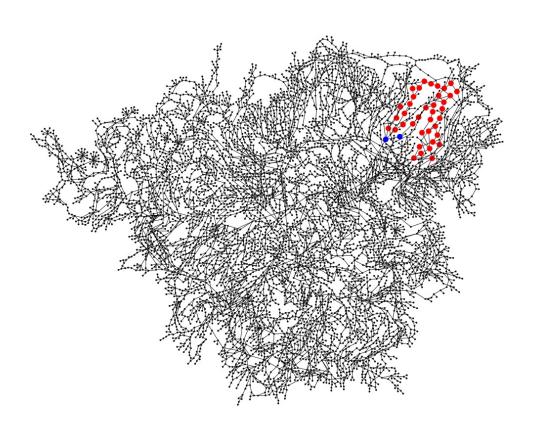
Solution

- Let S be the set of buses where the base case solution is infeasible
- 2. Let **N** be the set of buses that are close to **S** using an appropriate metric
- **3. Fix** all binary variables **outside** of **N**. Run Knitro on resulting problem
- 4. What is the "appropriate metric". Length of a branch <f, t> = reactance
- 5. What is "close": take the nearest K buses. K = 5, 10, 40, 100 were tried by us. Make sure N includes at least one generator

N06100 scenario 115

6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

Contingency 3 (line down)



• Base case obj: **712281.64**

• **Heuristic** solution:

total_bus_cost 1.65362151e-02 total_load_benefit 1.25961077e+06 total_gen_cost 5.44767392e+05 total_line_cost 0.00000000e+00 total_xfmr_cost 0.00000000e+00

objective 714843.36

31.30 seconds 227 iterations

+ 6.8 seconds + 27 iterations (rounding)

Thoughts about the future

- **Implementation in C?** Assuming the input format and evaluation does not change.
- Thinking about a GPU-based prox-like algorithm for nonconvex optimization
- We were implementing a "survivable network" step that did not make it into the final round due to our lack of time. (1 out of N system)
 - Applies to generator-out contingencies
 - No generator involved in a contingency should output "too much" in the base case solution
 - The "too much" involves a computation that in principle is another nonconvex optimization problem

$$\sum_{g} P_{g} \leq D_{base}$$

$$\sum_{j \neq g} s_{j} P_{g} \geq D' \quad \forall g \in C$$

$$\Rightarrow P_{g} \leq M_{g}$$

Useful?

Thoughts about the future

We look forward to the next challenge

• Please, please, please let it span **three** summers.

Many of us

have a day job have a life teach

have other time consuming ARPA-E contracts

have a lot to do beyond this nice competition